Publicações
REGA - Revista de Gestão de Água da América Latina - ISSN 2359-1919
VOLUME. 18 - JAN/DEZ - 2021
ARTICLE
Deriving reservoir operational behavior with artificial neural networks: the case of Luiz Gonzaga dam, Brazil
Abstract:
Reservoirs are operated following specific policies, constrained by hydrological and structural conditions. When modeling anthropized water systems with reservoirs, the incorporation of existing operating policies is important to improve model capability. However, operating policies are not always available or easy to identify within large-scale multi-reservoir systems, where operation derives from large number of variables and constraints rather than a clear-cut local objective function. This study applies Artificial Neural Networks (ANNs) with the objective of analyzing if local variables (inflow, storage level, and evaporation) of a sub-system part of a large-scale coordinated multi-reservoir system are sufficient predictors of the operational behavior (release decisions) in a daily time step. The sub-system includes the Luiz Gonzaga and Sobradinho reservoirs. Results pointed to a Nash-Sutcliffe efficiency coefficient (NS) of 0.67 to 0.74 and a coefficient of determination (r2) of 0.75, showing that we can predict the sub-system operational behavior most of the time but with some outflow peaks under predicted. 
Keywords: Reservoir operating policy; Reservoir operation emulation; Anthropized water systems simulation. 

 

 

Análise do comportamento operacional de reservatórios com redes neurais artificiais: o caso de Luiz Gonzaga, Brasil
Resumo:
Reservatórios são operados de acordo com políticas específicas, condicionadas por condições hidrológicas e estruturais. Em simulações hidrológicas de sistemas hídricos antropizados com reservatórios, a incorporação de regras operacionais é fundamental para melhorar a capacidade de modelagem. No entanto, regras de operação nem sempre estão disponíveis ou são fáceis de identificar em sistemas multirreservatórios de grande escala, onde a operação deriva de um grande número de variáveis e restrições, em vez de uma função objetivo local bem definida. Este estudo aplica Redes Neurais Artificiais (RNAs) com o objetivo de analisar se variáveis locais (vazão, armazenamento e evaporação) de um subsistema parte de um sistema multirreservatório integrado de grande escala são preditores suficientes do seu comportamento operacional (decisões de despacho) em um intervalo de tempo diário. O subsistema inclui os reservatórios de Luiz Gonzaga e Sobradinho. Os resultados apontaram para um coeficiente de eficiência Nash-Sutcliffe (NS) de 0,67 a 0,74 e um coeficiente de determinação (r2) de 0,75, mostrando que podemos prever o comportamento operacional do subsistema na maior parte do tempo, mas com alguns picos de vazão não previstos. 
Palavras-chave: Regra de operação de reservatórios; Emulação da operação de reservatórios; Simulação de sistemas hídricos antropizados. 

 

 

100 visualizações   50 downloads     Contabilizado a partir de 10/08/2014

 

ABRHidro - Associação Brasileira de Recursos Hídricos